

Genetic Bases of Hearing Loss: Future Treatment Implications

Luis F. Escobar, MD

Medical Director Medical Genetics & Neurodevelopmental Pediatrics of Indiana Peyton Manning Children's Hospital St. Vincent Hospital and Health Services Indianapolis, Indiana

THE SPIRIT OF CARING®

1. Review Basic Concepts and Ideas

- 2. Review Gene Involvement in Hearing and Auditory organs development
- 3. Review some of the future forms of treatment involving hearing loss
- 4. Review the importance of recognizing that genetic testing does not equal to genetic evaluation

Special Needs

Used in clinical diagnostic and functional development to describe individuals who require assistance : medical, mental, or psychological

Special needs often refers to special needs within an educational context. This is also referred to as special educational needs (SEN).

In Germany a similar term exists. Special needs children are called "besondere Kinder" ("special children").

Special Needs

Establishment of a System

Medical Special Needs in the US

http://www.cdc.gov/nchs/data

19% of Americans are classified as a person with a special need, which equals the population of the states of FL and CA combined

41% of children with developmental difficulties have multiple special needs

17% of Americans will experience a communication disorder at some point in their life, which includes sensing, interpreting and responding (i.e. auditory processing disorder).

Medical Genetics

Other Diagnoses Associated with Hearing Loss

Gallaudet Research Institute, 2003

Diagnosis	%
Learning difficulties	10.7
Developmental delay	9.8
Attention difficulties	6.6
Blindness and low vision	3.9
Cerebral palsy	3.5
Emotional disturbance	1.5
Other conditions	12.1
TOTAL	48.1

Genetics: A case against perfection

"Congratulations, it's a Versace!"

Developments

1) Molecular/genetic understanding of hereditary hearing loss vastly enhanced over last 10 years

- Genetic testing and Genetic Evaluation is now an integral part on the assessment of children with hearing impairment
- 2) Early intervention [medical vs. surgical] now standard of care with limitations
 - 3) Genetic treatment may be the choice in the future

"You look different—have you been evolving or something?"

Ŧ

Definition of Evolution

"Evolution is a process that results in heritable changes in a population spread over many generations"

Evolution and Birth Defects

Birth defects are suppose to happen Birth defects can be advantageous Birth defects can be deleterious In search of individuality Birth defects can be silent

Mutated miR-96 gene 14 April 2009. Chrissie Giles

15

Stage12-4th week of gestation

Embryology of the ear placode

Images of the lateral view of the human embryonic head from week 5 (stage 14) through to week 8 (stage 23)

RNA in situ hybridization of Pds in noncochlear regions of the mouse inner ear.

Everett L A et al. PNAS 1999;96:9727-9732

©1999 by National Academy of Sciences

Newborn mice lacking the *Slitrk6* gene (right) have severe reductions in the numbers of nerve fiber bundles innervating the inner ear compared to wild-type animals (left).

The ATP-dependent chromatin remodeling enzyme CHD7 regulates

Cochlea and Kidney a genetic relationship

Statoacustic ganglion

Otocyst

Basal turn of the cochlea

Tip of digits

Vibrissae

Nasal/Oral epithelia

Amniotic membrane

Multi-system gene expression: 30,000 genes

A systems Biology of early mouse inner ear organogenesis: gene expression, patterns, networks and pathways.

Samin Ahmed Sajan, PhD. University of Washington, May 2008

An inner ear gene expression database. Chen ZY, Corey DP Assoc Res Otolaryngol. 2002 Jun;3(2):140-8.

Microarray technology

Mouse cochleas were examined at two developmental stages (P2 and P32) using GeneChip oligonucleotide arrays

> 10,000 genes were found to be expressed in the cochlea

Gene Function and Hearing

Developmental Time Gene Expression Gene Expression Transformation Gene Regulation Genetic susceptibility

Identifying Infants with Hearing Loss

Undetected hearing loss can delay speech and language development

All states and U.S. territories also have established Early Hearing Detection and Intervention (EHDI) programs

Infant Hearing Loss

Hearing Loss

Case 5 - CATSHL

- Camptodactyly
- Tall Stature
- Congenital bone abnormalities
- Congenital hearing loss diagnosed as isolated nonsyndromic at birth (moderate bilateral SNHL)

Toydemir, et al. A Novel Mutation in *FGFR3* Causes Camptodactyly, Tall Stature, and Hearing Loss (CATSHL) Syndrome, *AJHG* 2006; 79, 5

Mutation in *FGFR3* (1862G \rightarrow A): CATSHL syndrome

Mutation in the FGFR3 gene

Chromosome 4

ENT Medical Work UP

ABR testing - moderate CHL right and normal hearing left

CT scan of temporal bones

- bilateral dysplasia of bony labyrinths
- normal cochleae, IACs, vestibular acqueducts, and ossicles
- Possible anomaly of right facial nerve

Testing for Pendred Syndrome - Insurance company rejected testing unless recommended by Medical Genetics

Referral to Genetics

Medical Genetics Findings

- Cervical fusion fusion of C1-C2, retrolisthesis of C3 on C4, C6 and C7 fusion
- 2. Facial asymmetry
- 3. Speech/language delay
- 4. Hand and arm anomalies
- 5. DX: Klippel Feil Syndrome
- 6. No Genetic testing needed

Klippel-Fiel Syndrome Most Common Associated Abnormalities

Anomaly	Percentage of Patients
Congenital scoliosis	> 50 %
Rib abnormalities (excluding cervical ribs)	33%
Deafness	30%
Genitourinary abnormalities	25-35%
Sprengel's deformity	20-30%
Synkinesia	15-20%
Cervical Ribs	12-15%
Cardiovascular abnormalities	4-29%

Tracy, M.R, Dormans, J.P., and Kusumi, P. *Klippel-Fiel Syndrome*, Clinical Orthopaedics and Related Research, 2004.

Clinical Application

Genetic Testing vs. Genetic Evaluation

Iris Colobomas

Cat-Eye syndrome Preauricular tags/pits Stenotic ear canals 22q deletion Mixed Hearing loss

Robin Sequence

Micrognathia Cleft palate Apnea

Stickler Syndrome

45

Cleft lip/palate

Van Der Wood syndrome

Genetic Testing:

Genetic Evaluation:

