# HOW DO WE KNOW IF TECHNOLOGY DOING WHAT IT NEEDS TO DO?

EDHI Conference Louisville March 8, 2015

Jane R. Madell, PhD, CCC A/SLP, LSLS Cert AVT www.JaneMadell.com



#### **LEARNING OBJECTIVES**

As a result of this continuing education activity, participants will be able to:

- · Determine what type of technology is appropriate
- Determine if children are receiving appropriate benefit from technology
- · Determine when new technology is needed
- Determine how to use technology information to optimize management

www.JaneMadell.com



#### **TECHNOLOGY IS A MEANS TO AN END**

- The goal of technology
  - To provide access to sound sufficient to
    - Develop the auditory brain
    - Hear and learn language
    - Build literacy skills
    - Develop social skills

www.JaneMadell.com



#### **COMPONENTS OF SUCCESS**

- · Language at age level
- · Literacy at age level
- · Socialization skills at age level

ww.JaneMadell.com



#### WHAT DOES IT TAKE TO GET THERE?

- The better you hear the better you learn
- Early identification
- Early, appropriately fit technology
- Full time use of technology
- Therapy, preferably auditory based, involving family
- · Family support
- Language rich environment
- Opportunities to learn
- Educational program willing and able to make the necessary adaptations for maximizing learning

www.JaneMadell.com

#### **GOAL OF ASSISTIVE TECHNOLOGY**

- · Reduce sensory deprivation
- Provide auditory access sufficient for auditory learning
- Improve auditory access to language
- · Maximize use of residual hearing
- Lay foundation for academic learning using audition
- Facilitate information access/extended learning/ incidental learning
- Facilitate socialization
- Safety
- Comfort



# AMPLIFICATION ASSUMPTIONS

- Appropriate amplification is the most important habilitative tool available for children with hearing loss
- While appropriate technology is critical, it is not sufficient by itself. Technology should be part of a program including auditory therapy and parent counseling to permit parents to be their babies primary teachers.

www.JaneMadell.com

# AMPLIFICATION ASSUMPTIONS

- The amplification system of choice is dependent on the child, communication environment, as well as the hearing loss
- Standard hearing aids work well for children with mild to moderately-severe hearing loss when talker and listener are close and it is quiet.
- Cochlear implants work well for children with severe and profound hearing loss.
- If a child is not receiving sufficient auditory access with hearing aids, consider cochlear implants

www.laneMadell.com

# AMPLIFICATION ASSUMPTIONS

 An FM system will improve auditory access for every person with impaired auditory function by reducing the negative effects of distance and noise.

munu IanoMadoll co



#### FIRST YOU HAVE TO HEAR WELL

www.JaneMadell.com



# THE BETTER YOU HEAR, THE BETTER YOU LEARN

- Yes, the kids have a hearing loss
- · Yes, they are fit with technology
- Is the technology appropriately set?
- Are they wearing it? How much?
- IS THE TECHNOLOGY DOING WHAT IT NEEDS TO DO?
  - Never assume
  - If you don't test, you don't know

www.JaneMadell.con



#### **HEARING**

- Hearing is a first-order event for the development of spoken communication and literacy skills.
- Anytime the word "hearing" is used, think "<u>auditory brain development</u>"!!
- Acoustic accessibility of *intelligible* speech is essential for brain growth.
- Signal-to-Noise Ratio is the key to hearing intelligible speech.
- Our early intervention programs and classrooms must take into consideration the listening capabilities and acoustic access of our children.

# HOW MUCH PRACTICE IS NEEDED TO INFLUENCE NEURAL STRUCTURE? • Malcolm Gladwell: 10,000 hours of practice • Hart and Risley: 46 million words heard by age 4 • Dehaene: 20,000 hours of listening as a basis for reading • Pittman: Children with hearing loss require three times the exposure to learn new words and concepts due to the reduced acoustic bandwidth caused by the hearing loss www.JaneMadell.com

|                                    |              | PARENTS       |         |              | CHILDREN      |         |
|------------------------------------|--------------|---------------|---------|--------------|---------------|---------|
|                                    | Professional | Working class | Welfare | Professional | Working class | Welfare |
| IQ age 3                           |              |               |         | 117          | 107           | 79      |
| Vocab size                         | 2,179        | 1,498         | 974     | 1,116,       | 749           | 525     |
| Average.<br>Utterances per<br>hour | 487          | 301           | 176     | 310          | 223           | 168     |
| Average Diff Words<br>per Hour     | 382          | 251           | 167     | 297          | 216           | 149     |
| Average Words per<br>Hour          | 2,153        | 1,251         | 616     |              |               |         |
| Average Words per<br>14 hour day   | 30.142       | 17,514        | 8,624   |              |               |         |

| Hart and Risley (1995)                                                                                                                                    |              |               |         |              |               |         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|---------|--------------|---------------|---------|--|--|
|                                                                                                                                                           |              | PARENTS       |         |              | CHILDREN      |         |  |  |
|                                                                                                                                                           | Professional | Working class | Welfare | Professional | Working class | Welfare |  |  |
| IQ age 3                                                                                                                                                  |              |               |         | 117          | 107           | 79      |  |  |
| Vocab size                                                                                                                                                | 2,179        | 1,498         | 974     | 1,116,       | 749           | 525     |  |  |
| Average.<br>Utterances per<br>hour                                                                                                                        | 487          | 301           | 176     | 310          | 223           | 168     |  |  |
| Average Diff Words<br>per Hour                                                                                                                            | 382          | 251           | 167     | 297          | 216           | 149     |  |  |
| Average Words per<br>Hour                                                                                                                                 | 2,153        | 1,251         | 616     |              |               |         |  |  |
| Average Words per 14 hour day                                                                                                                             | 30.142       | 17,514        | 8,624   |              |               |         |  |  |
| Hart, B and Risley, T.T (1995) Meaningful Differences in the Everyday Experience of Young American Children, Baltimore: Paul H. Brooks Publishing Co, Inc |              |               |         |              |               |         |  |  |







#### ACOUSTIC ACCESS TO THE BRAIN

- · Access is the biggest problem for all degrees of hearing loss.
- · Hearing aids, FM systems and cochlear implants are "brain access" tools.
- · Technology must be programmed to today's possibilities.
- · Evidence must be obtained, daily that the technology is functioning appropriately.
- If the child is not progressing as expected and everyone has very high expectations - suspect the technology first.

www.JaneMadell.com

#### **AUDITORY ACCESS**

- · It is critical that children have good auditory access to facilitate auditory brain development and to enable them to use audition to learn language.
- Good auditory access requires
  - That a child hear all phonemes throughout the frequency
  - That the child hear sound at the top of the speech banana
  - That the child hear normal and soft speech
  - That the child hear in noise
  - That the child hear for many hours during the day

www.JaneMadell.com



#### WHY IS AUDIOLOGIC INFORMATION **CRITICAL?**

- · Because of advances in technology and new research about brain neuroplasticity,
  - the landscape of deafness has changed.
  - the audiologist's role has expanded in pediatrics
  - families, audiologists, listening and spoken language specialists, speech-language pathologists and teachers of the deaf need to be sure they are stimulating auditory brain development

www.JaneMadell.com

#### HOW DOES THE AUDITORY BRAIN WORK?

- · The auditory cortex is directly involved in speech perception and language processing in humans (Kretzmer ie al, 2004).
- · Normal maturation of central auditory pathways is a precondition for the normal development of speech and language skills in children (Sharma et. Al, 2009).
- Important changes have been shown in the higher auditory centers due to hearing loss/deafness.



#### KEY POINTS

- · Hearing is a first-order event for the development of spoken communication and literacy skills.
- · Anytime the word "hearing" is used, think "auditory brain development"!!
- · Acoustic accessibility of intelligible speech is essential for brain growth.
- Signal-to-Noise Ratio is the key to hearing intelligible speech.



# WHAT DOES THE TECHNOLOGY NEED TO BE DOING TO MEET THE NEEDS OF ACOUSTIC ACCESSIBILITY?

- The child needs to hear throughout the frequency range
  - 6000 and 8000 Hz really do matter
  - Missing high frequencies results in missing grammatical markers for pluralization, possessives, and missing non-salient morphemes (eg morphemes that are not stressed during conversation -eg prepositions)
- The child needs to hear at a soft enough level
  - Soft speech is about 30-35 dBHL
  - If a child cannot hear soft speech, she will not hear
    - Peers in the classroom or on playground
  - Will not "overhear" conversation and will have limited incidental learning
     Will have reduced language and literacy skills

  - Moeller (2011) reported that in her research 40% if children fit with heari aids were underfit
- Aided thresholds at 0 dB is not the goal
- Aided thresholds at 20 dB is the goal



# TECHNOLOGY NEEDS TO BE DISTORTION FREE

- · Kids with HL have more difficulty managing distortion
- · Sources of distortion in the technology
  - Does activation from the special features of technology cause distortion?
  - Timing and activation of special features could cause issues
  - Activation of some of these features may reduce audibility of some of the frequency range
- · If the child is not making progress, consider
  - Distortion from each piece of technology or between pieces of technology
    - HA and FM
    - Cl and FM
    - HA and CI
    - FM input
      - Personal FM and SF
         www.JaneMadell.com













# If The Child Is Not Progressing As Expected

- · Suspect technology first
  - Is the child hearing well enough with the technology?
- Is the child hearing high frequencies
- Is the child wearing technology consistently?
  - If a child is using technology 4 hrs/day it will take 6 years for the child to hear what a typically hearing child hears in one year.
- · Does the family have appropriate expectations?
- Are they requiring full time use of technology'
- Are they providing auditory stimulation
   Do they expect the child to listen and talk
- Do the clinicians working with the child have appropriate auditory

xpectations?

www.JaneMadell.com



#### **TEST PROTOCOL**

To determine OPTIMAL speech perception

· test at a loud level

To ASSESS DAILY FUNCTIONING test at

- Normal conversational level (50 dBHL)
- Soft conversational level (30-35 dBHL)
- Normal conversation in competing noise (+5 SNR)
  - Noise needs to be realistic eg four talker babble
  - Classroom noise level is +5 SNR
- When testing auditory processing add
  - 50 dB at 0 SNR
  - 35 dB at 0 SNR

www.JaneMadell.com



#### **TEST CONDITIONS**

- Why do we need to test more than one condition?
  - Knowing a person hears loud speech well is only part of the information we need.
  - Can he hear sufficiently well in quiet?
  - Can she hear sufficiently well in noise?



|                 | Mean score |
|-----------------|------------|
| 50 dB in quiet  | 84%        |
| 35 dB in quiet  | 56%        |
| 50 dB +5<br>S/N | 58%        |
| 50 dB 0<br>S/N  | 46%        |
| 35 dB 0<br>S/N  | 34%        |



|             |     |      |    | Male |     |        |    | Female |     |        |
|-------------|-----|------|----|------|-----|--------|----|--------|-----|--------|
| Condition   | CA  | List | N  | WR%  | SD  | 95% CI | N  | WR%    | SD  | 95% CI |
| Quiet 50 dB | 3-5 | NU-C | 14 | 98   | 3.7 | 96-100 | 12 | 98     | 3.2 | 96-100 |
| Quiet 50 dB | 6-8 | PBK  | 13 | 98   | 3.1 | 97-100 | 12 | 98     | 3.2 | 96-100 |
| Quiet 50 dB | 9+  | W-22 | 13 | 99   | 1.9 | 98-100 | 6  | 96     | 5.1 | 92-100 |
|             |     |      |    |      |     |        |    |        |     |        |
| Quiet 35 dB | 3-5 | NU-C | 19 | 95   | 5.2 | 92-97  | 13 | 96     | 4.8 | 93-98  |
| Quiet 35 dB | 6-8 | PBK  | 23 | 97   | 3.7 | 95-98  | 24 | 98     | 3.1 | 97-99  |
| Quiet 35 dB | 9+  | W-22 | 17 | 98   | 2.8 | 97-100 | 9  | 96     | 4.2 | 93-98  |
|             |     |      |    |      |     |        |    |        |     |        |
| 50 @ +5 SNR | 3-5 | NU-C | 28 | 93   | 4.6 | 91-95  | 16 | 94     | 4.1 | 92-96  |
| 50 @ +5 SNR | 6-8 | PBK  | 13 | 94   | 4.5 | 92-96  | 25 | 95     | 5.1 | 93-97  |
| 50 @ +5 SNR | 9+  | W-22 | 17 | 97   | 4.1 | 95-99  | 7  | 93     | 3.8 | 90-96  |
|             |     |      |    |      |     |        |    |        |     |        |
| 50 @ 0 SNR  | 3-5 | NU-C | 23 | 91   | 6.9 | 88-94  | 17 | 92     | 6.5 | 89-95  |
| 50 @ 0 SNR  | 6-8 | PBK  | 18 | 91   | 5.4 | 89-93  | 28 | 93     | 6.0 | 90-95  |
| 50 @ 0 SNR  | 9+  | W-22 | 19 | 95   | 4.7 | 93-97  | 11 | 93     | 4.8 | 91-96  |
|             |     |      |    |      |     |        |    |        |     |        |
| 35 @ 0 SNR  | 3-5 | NU-C | 23 | 90   | 6.1 | 87-93  | 16 | 92     | 6.0 | 89-94  |
| 35 @ 0 SNR  | 6-8 | PBK  | 28 | 91   | 6.2 | 88-93  | 28 | 90     | 6.1 | 87-92  |
| 35 @ 0 SNR  | 9+  | W-22 | 18 | 91   | 6.2 | 88-94  | 11 | 90     | 7.0 | 86-94  |

# BY TESTING IN MORE DIFFICULT CONDITIONS

- We can get a more realistic picture of every day performance
- · Make better decisions about performance
- · Better indication of habilitation needs
- Make better educational placement recommendations
- · Raise expectations for patients with HL
- Better determination about who needs to move to a CI
- · Provide better research

www.JaneMadell.co











# HOW DO WE KNOW THAT THE CHILD'S TECHNOLOGY IS PROVIDING SUFFICIENT ACOUSTIC ACCESSIBILITY?

- · Evidence obtained in the sound room
- Thresholds
- Speech perception tests
- Evidence of a child's progress in attaining desired outcomes
  - One year progress in one year
- Parental observation of listening and learning at home
- · Therapist/teacher observations
- Lena

# DEMONSTRATING AMPLIFICATION BENEFIT

- · Electroacoustic measurements
- · Real ear measurements
  - Establish targets
  - Test HA in standard way.
  - Test FM microphone
  - Test HA and FM separately and together
- · Are we done yet?
- · What does real ear tell you about what the child hears?

1

ww.JaneMadell.com

#### WHY TEST FUNCTIONAL GAIN?

- Electroacoustic testing does not provide information about how a child hears.
- · Is the child aware of sound?
- · Does the child attend to sound?
  - At what levels?
- · Does the child use the information?
- · Is it clear? Distorted?

..... Ional Iodall con



# HOW DO WE KNOW AUDITORY ACCESS IS SUFFICIENT?

- Aided thresholds at 20-25 dB throughout the frequency range
- · Speech perception at good to excellent levels
  - At normal conversational levels
  - At soft conversational levels
  - In guiet and in noise.

•



- Aided thresholds 250-8000 Hz
  - Right, Left
- · Speech perception
  - Normal conversation (50 dBHL)
    - Right, left, binaural
  - Soft conversation (35 dBHL)
  - Binaural
  - Right, left if time permits
  - Normal conversation in noise (50 dBHL +5 SNR)
    - Binaural
    - · Right, left if time permits

ww.JaneMadell.com



## 

#### IS AUDITORY ACCESS SUFFICIENT?

- Technology thresholds 20-25 dBHL
  - If not sufficient,
    - Reprogram or change technology
    - · Acoustically-tuned earmolds
    - Remote microphone is not a substitute for well programmed primary technology
  - YES, YOU CAN PERFORM AIDED THRESHOLD TESTING
    - Present from below expected threshold
    - · Short presentation will not turn on compr



#### WHAT CAN PARENTS DO?

- Teach parents how to identify how well the baby is hearing.
- · Stimulate child at ear level with each of the Ling sounds
  - · Put hearing aids on in morning
  - Turn them on,
  - · Stimulate with one Ling sound
    - Ah, ah, ah
  - · Observe child to see response
  - · Each day choose a different sound
  - Report back to the audiologist which sounds the child can hear
- If child hears /a/, /u/ /i/ but not /sh/ or /s/ what do we do?
- Listen to therapists if they say there is a problem
- Audiologist should adjust hearing aid settings based on what the child is and is not hearing.

www.JaneMadell.com

#### IS SPEECH PERCETION SUFFICIENT?

- · What is good enough?
- The goal is 90-100% in all conditions
  - At least at normal conversation
  - Good (80-89%) for soft speech and speech in noise



## SUGGESTED SCORING - SPEECH PERCEPTION

Madell et al 2010

 Excellent 90-100% Good 80-89% Fair 70-79% • Poor < 70%



#### IF SPEECH PERCEPTION IS NOT GOOD

- · Are aided thresholds sufficiently soft in each ear?
- Is child using the technology full time?
- Is the child receiving auditory based language stimulation
- · Review therapy
- · Help parents improve language stimulation skills



#### MAKING TECHNOLOGY DECISIONS

www.JaneMadell.com



#### WHO NEEDS TECHNOLOGY?

- · Any child who has poorer than 15 dB thresholds in either ear
- Any child with insufficient auditory access
  - Less than excellent speech perception (90-100%)
    - · At normal conversation
    - · At soft conversation
    - · In competing noise

#### WHO NEEDS TECHNOLOGY?

- · Mild to profound hearing loss
  - Mild hearing loss?
    - · Immediately?
    - · After 6 months?
    - · When mobile?
    - · Does it depend on the auditory environment?
- · Unilateral hearing loss
- · Auditory neuropathy spectrum disorder
- · Poor speech perception

www.JaneMadell.com



#### WHEN IS TECHNOLOGY NEEDED?

- · Difficult listening situations
  - School
  - Car
  - Dinner table
- · When sick or tired
- · When hearing is fluctuating
- · Any situation in which listening is critical

www.JaneMadell.com



#### WHEN IS TECHNOLOGY NEEDED?

- If a child wears hearing aids 4 hours/day it will take 6 years for the child to hear what a child with normal hearing hears in one year.
- · Always?
- · Awake hours?
- · When being held?
- · Is there a difference in need to listen between younger and older infants?
- · Between infants and toddlers?
- · Toddlers and older kids?
- · Tweens, and teens?



#### FACTORS TO CONSIDER IN SELECTING TECHNOLOGY

- Age
- · Degree of hearing loss
- · Auditory environment
- Educational environment
- Special needs
- · Family needs



#### **MONAURAL VS BINAURAL**

- Fit MONAURALLY
  - When significant differences between ears
    - And poorer ear cannot be made to hear
  - NO usable hearing in one ear
    - · What is usable?
- · BINAURAL advantage
  - Localization
  - Auditory perception
  - Hearing in noise
  - Sensory deprivation



#### **TECHNIQUES FOR IMPROVING AUDITORY ACCESS**

- · Frequency modification based on perception errors
- · Digital programming
- · Increased gain
- · Earmold modifications
  - Horned earmolds
- · Close microphone
- · Multiple memories



#### REPAIRING SPEECH PERCEPTION DEFICITS

- · Auditory brain access with equipment
- Auditory exposure -
  - Listening age
  - Hrs/day equipment is worn
- · Auditory environments
  - Do we need FM at home? Playground?
- · Daily auditory enrichment and embellishment
  - Parent focused, guided by the Listening and Spoken Language Specialist (LSLS)

www.JaneMadell.com



#### **HEARING AIDS FOR KIDS**

- · Flexible electroacoustic characteristics
  - Ability to increase output should hearing change
- Childproof battery compartment
- Childproof volume control inactive
- Retention devices
- FM
- · Compression?
- · Directional mic?
- Extended warrantee
- Availabilities of loaners



#### **MEASURING OUTCOME**

- · Auditory awareness
- · Audibility of speech
- · Speech intelligibility
- · Accuracy of speech production
- · Rate of language acquisition
- · Loudness discomfort
- · Social development



#### WHEN SHOULD OUTCOME BE MEASURED?

- Repeat measures
  - How often?
- · Longitudinal monitoring
- · Separating hearing changes from other factors
- · When are adult outcome measures adaptable?



#### THE MYTH OF "OVER"-AMPLIFICATION

- · Where's the data?
- · How much is too much?
- The importance of auditory access
- · "Saving hearing" vs learning language
- · The protection that hearing loss provides





#### TRANSITIONING FROM HEARING AIDS TO COCHLEAR IMPLANTS

- · Evidence to support transitioning from HA's to CI's
  - Is the child receiving acoustic access to all frequencies at a sufficiently soft level to hear normal and soft conversation?
- Evidence that is irrelevant in determining the need for better acoustic accessibility
  - Child likes his hearing aids
  - Concern about cosmetics
  - Child's progress in language and academics
    - Why is this irrelevant?
      - What does it take to sustain progress, not just attain it.
      - Without good acoustic access the child will miss incidental information both inside and outside the classroom and will start to fall behind
      - Sustaining requires ongoing access to incidental knowledge and information in ever increasing complex and nuanced learning situat
- Can we wait?

#### HOW DO YOU KNOW IT'S TIME TO MOVE FROM HA TO CI?

- Insufficient auditory access
  - Not hearing in the "string bean"
  - Not receiving high frequencies
  - FM dependent
  - Slow auditory progress
  - Slow language progress
    - · Less than one year's gain in one year
- Critical periods
  - Sharma and Dorman's work



#### **BABIES**

- · Time is critical
- · Severe is the new profound
- · Good auditory access is critical for language learning
  - Limits of hearing only close speech
  - Overhearing
  - Hearing at a distance
  - Hearing in noise
- · How young?
  - As soon as you are sure HA's are not sufficient



#### **DEGREE OF HEARING LOSS**

- · Severe
- Profound
- · Auditory neuropathy spectrum disorder



#### AGE

- · FDA approval for 12 months
- · Younger under special circumstances
  - Many centers in US implanting at 20 lbs (sufficient for reduced anesthesia risk) (6 months)
  - Australia implanting at 3 months
- · No upper age limit





#### **DURATION OF HEARING LOSS**

- · Not a significant factor if other considerations make the person a candidate
- Ideal
  - Relatively short duration
  - Recent decline to severe-profound



#### **COMMUNICATION MODE**

- · Oral communicator
- · Goal of developing auditory-oral skills
- Older children who rely on sign language and have not had auditory experience may not demonstrate open set skills.
  - No part of the brain functions on it's own

#### BABIES AND YOUNG KIDS

- Enrolled in an auditory-oral / auditory verbal program
- · TC program only if it is really "T"
  - with a significant auditory-verbal/auditory-oral component
- · Parents willing to work on auditory development
- · Reasonable expectations

ww.JaneMadell.com



#### **EARLY SCHOOL AGE**

- Families often consider CI as kids start to struggle
- · Sometimes after drop in hearing
- If kids have had good auditory development the transition is simple
- Recommendation sooner rather than later

eMadell.com



- · Factors affecting results
  - Age of implantation
  - Duration of deafness
  - Mode of communication significant
- Kids with hearing aid experience on the unimplanted ear did better when they got a CI than the kids who did not have a HA on the unimplanted ear

NYU group, 2008

TEENS

- · Motivated to improve auditory status
- Willing to attend mapping and therapy
- Enrolled in an educational program which emphasizes auditory development
- · Reasonable expectations
- · Family support



www.JaneMadell.con

# Importance of Auditory Access for Children

- Most children with hearing loss are educated in the mainstream
- These children are using audition to learn language
- It is essential for them to hear at sufficiently soft levels
  - To receive high frequency phonemes
  - To hear soft speech (35 dB HL)
- Typically children who are "borderline" candidates for a CI are dependent on audition for communication and language learning

| Results Summary              |                 |               |         |  |  |  |  |  |
|------------------------------|-----------------|---------------|---------|--|--|--|--|--|
|                              | Pre Op<br>Aided | Post Op<br>CI | p value |  |  |  |  |  |
| PTA Aided                    | 39.5 dB         | 25.6dB        | < 0.001 |  |  |  |  |  |
| Better ear                   | (27-58 dB)      | (15-40 dB)    |         |  |  |  |  |  |
| HFA aided                    | 47.5 dB         | 23.3 dB       | < 0.001 |  |  |  |  |  |
| Better ear                   | (27-72 dB)      | (17-30 dB)    |         |  |  |  |  |  |
| Wd recognition               | 23%             | 86.5%         | <0.001  |  |  |  |  |  |
| Poorer ear                   | (0-54%)         | (44-100%)     |         |  |  |  |  |  |
| Wd recognition<br>Better ear | 55%<br>(16-85%) |               | (a)     |  |  |  |  |  |

(48-100%)

#### **Study Conclusions**

- As a group there was a significant improvement in speech understanding as the result of CI
- Most Ss demonstrated substantially better performance following CI
- The CI provides access to more auditory information which can be expected to result in improved language learning as well as academic performance
- Further research should examine language learning and academic performance
- Centers may want to consider aided high frequency thresholds, and word recognition at softer levels in determining implant candidacts.

www.JaneMadell.com

# Expectations Post Implant Young Children

- Auditory development commensurate with hearing age
- Improved auditory thresholds and speech perception compared to what is possible with amplification
- Will continue to need therapy
- · Other disabilities will be a factor in development



www.JaneMadell.con

#### **RED FLAGS**

www.JaneMadell.com



#### **RED FLAGS:** Basic Behavioral Observations

- Child not tolerating technology
  - Child resistant to wearing technology
  - Behavior management issues related to technology
- Behavioral observations
  - No response/poor response to sound
  - Hypersensitive to sound
  - Involuntary eye blinks/facial stim when wearing devices
- IF CHILDREN HEAR WELL WITH THEIR TECHNOLOGY, THEY SHOULD WANT IT ALL DAY, EVERY DAY!!
- Parents (or other family members, esp. grandparents) are concerned about progress
  - Parents are often hesitant to express concerns
  - If parents are concerned we need to take their concerns seriously
  - Are they realistic?

www.JaneMadell.com

#### **RED FLAGS:** Ineffective Intervention

- Child and family are enrolled in ineffective intervention if the intervention:
  - Involves the child without involvement of the parents and family
  - Does not monitor technology every day
  - Does not follow a normal developmental model
  - Does not stress the development of audition as the basis of all speech and language



#### Support effective intervention by:

- · Monitoring parent education and training:
  - PARENTAL INVOLVEMENT AND EDUCATION ARE CRITICAL!!
  - Auditory based therapy model
  - Parents need to be involved in the therapy sessions and trained in sessions
  - Therapy for 1, 2 or even 3 hours does not replace parental involvement and reinforcement 24/7



#### Support effective intervention by:

- · Teaching technology monitoring / checking
  - Who is checking it daily?
    - Do parents, clinicians, and teachers have appropriate listening technology (hearing aid stethoscope, CI earbuds, CI listening check)?
    - · Do parents know how to use the technology?
    - · Do clinicians and teachers know how to use the technology?



#### Support effective intervention by:

- Evaluating signs of difficulty noted by clinicians/parents
  - · Not responding to high frequency stimuli
  - Poor high frequency responses
  - Distorted vowel production
  - Dropping certain consonants consistently
  - Speech sound deterioration
  - Mishearing
  - Increased "what?"
  - · Reporting static
  - · Any sudden and/or dramatic change in performance
- All members of the team listen to and respect input of other team members

#### Support effective intervention by:

- · Hearing loss limits access to speech and language; thus, the *hearing loss* creates the delayed speech and language.
  - Defined auditory component to therapy
  - Auditory skill development in appropriate sequence must be the focus of therapy
  - Auditory abilities are developed through the auditory modality
  - Parental guidance and coaching provided at every session for transfer to all settings

#### **RED FLAGS:** Auditory observations

- · Child does not tolerate technology
- Child cannot tolerate specific sounds/ noises
  - · Water running (faucet, toilet flushing) dog barking,
- · Skills from hearing aids do not readily transition and become skills with CIs
- · Relies on visual input for skills
  - "watches like a hawk"
- · Child does not respond to sound or to name
- Responding to less sounds with HAs on than with HAs off
- Responding to less sounds with CIs on than previously with HAs

#### **RED FLAGS:** Speech Production

- · Poor voice quality
  - Gravelly
  - Intensity whispers or too loud or unable to produce whisper
  - · Poor control of nasality
  - · Poor pitch control
  - Vocalizations on inhale



#### **RED FLAGS:** Speech Production

- · Poor syllabification
- · Poor vowel recognition
- · Vowel development, but no consonant development
- Issues of concern regarding consonant development
  - Inappropriate/unusual consonant development
  - · Limited variety of consonants

4

#### **RED FLAGS:** Language Development

- Lack of development of "conversational" babbling / jargoning
- Babbling / jargoning, but no intelligible vocabulary or language development
- Receptive language development, but no parallel development of expressive abilities
- Expectation: one year's growth in one year

www.JaneMadell.com



#### **RED FLAGS:** Deterioration of Skills

- · Speech discrimination deteriorates
  - No longer demonstrates perception, discrimination or comprehension previously observed
- · Speech production deteriorates
  - Unable to produce a phoneme previously mastered or emerging
- Vocabulary and language development plateau or regress

www.JaneMadell.com

#### **NEVER ASSUME!!!!**

- ALWAYS COLLECT DATA!!!
- Parent, teacher, and clinician data and documented observations are essential to appropriate remediation of the problems.
- We must *test* to begin to determine what is affecting progress.

www.JaneMadell.com

IF A CHILD HAS APPROPRIATE PARENTAL AND INTERVENTIONAL SUPPORT, THEN RED FLAGS POINT TO TECHNOLOGY ISSUES.

www.JaneMadell.com



#### **TECHNOLOGY ISSUES FOR HEARING**

- The most important use of our hearing is for speech and language perception.
- Very simply, speech and language perception issues result from one or more of four situations:
  - I did not understand because it was too quiet.
  - I did not understand because it was too loud.
  - I did not understand because it was not clear.
  - I did not understand because I do not have the language development.

# WHAT DOES TECHNOLOGY TELL US ABOUT HEARING?

- Real ear measures and CI mapping do NOT tell you what the child is hearing!
  - Real ear only tells you what is reaching the eardrum.
  - CI MAPs/NRT only tell how much electrical stimulation is being provided.
  - Real ear and CI MAPs tell you **nothing** about what the auditory brain hears!!

www.JaneMadell.com

# IF HA AND CI PROGRAMS DO NOT TELL US WHAT A CHILD HEARS, THEN WHAT DOES?

- Children provide us with accurate and reliable information about what they hear:
  - When we observe and understand their behaviors
  - When we listen to what they say and how they say it
  - When they complete detailed audiological testing with an experienced pediatric audiologist
  - Parents, interventionists, teachers, family members, and friends are essential to this process

www.JaneMadell.com



#### **POOR CLARITY**

- English has approximately 44 phonemes (not just the Ling 6).
- · Assess the majority of consonants.
- · Assess vowels as needed.
- Assessing phoneme perception at 3 ft. and 10 ft. can identify specific areas of programming to change.
- Use the frequency allocation charts to identify the specific frequency bands needing change.
- Programming changes can and do lead to *IMMEDIATE* speech perception changes.







