EARLY HEARING DETECTION AND INTERVENTION VIRTUAL CONFERENCE
MARCH 2-5, 2021
(Virtually the same conference, without elevators, airplane tickets, or hotel room keys)
5/24/2018 | 2:15 PM - 2:30 PM | LIMITS AND LOCATION OF DENITRIFICATION AT CATCHMENT SCALES: CAN HYPORHEIC AND RIPARIAN REMOVAL SOLVE DIFFUSE NUTRIENT POLLUTION? | 310 A
LIMITS AND LOCATION OF DENITRIFICATION AT CATCHMENT SCALES: CAN HYPORHEIC AND RIPARIAN REMOVAL SOLVE DIFFUSE NUTRIENT POLLUTION?
Protecting or restoring stream corridors is a common approach for improving water quality. Riparian and hyporheic zones support high rates of nutrient retention and removal but represent only a small portion of the total catchment volume. Determining the relative importance of stream corridors in attenuating catchment-scale nutrient fluxes requires quantifying nutrient removal in more distal and deep catchment components, which remains a challenge. Here we present case studies integrating data from 45 locations across France and the U.S. We used multi-tracer methods to quantify the rate and total amount of denitrification at the catchment scale, including partitioning near surface (riparian and hyporheic) from deep (aquifer) denitrification. We calibrated water residence time, reaction times, and location of reactive zones using concentrations and isotopes of carbon, nitrogen, oxygen, and sulfur species, and anthropogenic dissolved gases (CFCs and SF6). We found that aquifer denitrification made up a substantial portion of catchment-level nitrogen attenuation at most sites. Without this “deeper” understanding of where and when denitrification occurs, it will not be possible to constrain the role of stream corridors in catchment nutrient budgets.
- Hydrology
- Hotspot
- Stoichiometry
Presentation:
This presentation has not yet been uploaded.
Handouts:
Handout is not Available
Transcripts:
CART transcripts are NOT YET available, but will be posted shortly after the conference
Presenters/Authors
Benjamin Abbott
(), Brigham Young University, Department of Plant and Wildlife Sciences, benabbott@byu.edu;
ASHA DISCLOSURE:
Financial -
Nonfinancial -
Tamara Kolbe
(), Swedish University for Agricultural Science, Uppsala, Sweden, tamara.kolbe@slu.se;
ASHA DISCLOSURE:
Financial -
Nonfinancial -
Jean-Raynald de Dreuzy
(), Université de Rennes, CNRS, Géoscience Rennes - UMR 6118, 35000 Rennes, France, jean-raynald.de-dreuzy@univ-rennes1.fr;
ASHA DISCLOSURE:
Financial -
Nonfinancial -
Camille Vautier
(), Université de Rennes, CNRS, Géoscience Rennes - UMR 6118, 35000 Rennes, France, camille.vautier@univ-rennes1.fr;
ASHA DISCLOSURE:
Financial -
Nonfinancial -
Jean Marçais
(), Université de Rennes, CNRS, Géoscience Rennes - UMR 6118, 35000 Rennes, France, jean.marcais@univ-rennes1.fr;
ASHA DISCLOSURE:
Financial -
Nonfinancial -
Zahra Thomas
(), UMR SAS, AGROCAMPUS OUEST, INRA, 35000 Rennes, France, zahra.Thomas@agrocampus-ouest.fr;
ASHA DISCLOSURE:
Financial -
Nonfinancial -
Florentina Moatar
(), INRAE, florentina.moatar@inrae.fr;
ASHA DISCLOSURE:
Financial -
Nonfinancial -
Luc Aquilina
(), Université de Rennes, CNRS, Géoscience Rennes - UMR 6118, 35000 Rennes, France, luc.aquilina@univ-rennes1.fr;
ASHA DISCLOSURE:
Financial -
Nonfinancial -
Thierry Labasque
(), Université de Rennes, CNRS, Géoscience Rennes - UMR 6118, 35000 Rennes, France, thierry.labasque@univ-rennes1.fr;
ASHA DISCLOSURE:
Financial -
Nonfinancial -
Jay Zarnetske
(), Department of Earth and Environmental Sciences, Michigan State University, jpz@msu.edu;
ASHA DISCLOSURE:
Financial -
Nonfinancial -
Christophe Lécuyer
(), Laboratoire de Géologie de Lyon (LGL-TPE), UMR CNRS 5276, Université Claude Bernard Lyon 1, Villeurbanne, France, christophe.lecuyer@univ-lyon1.fr;
ASHA DISCLOSURE:
Financial -
Nonfinancial -
Gilles Pinay
(), CNRS, gilles.pinay@ens-lyon.fr;
ASHA DISCLOSURE:
Financial -
Nonfinancial -